new EllipseOutlineGeometry
A description of the outline of an ellipse on an ellipsoid.
Parameters:
| Name | Type | Argument | Default | Description | 
|---|---|---|---|---|
| options.center | Cartesian3 | The ellipse's center point in the fixed frame. | ||
| options.semiMajorAxis | Number | The length of the ellipse's semi-major axis in meters. | ||
| options.semiMinorAxis | Number | The length of the ellipse's semi-minor axis in meters. | ||
| options.ellipsoid | Ellipsoid | <optional> | Ellipsoid.WGS84 | The ellipsoid the ellipse will be on. | 
| options.height | Number | <optional> | 0.0 | The height above the ellipsoid. | 
| options.extrudedHeight | Number | <optional> | The height of the extrusion. | |
| options.rotation | Number | <optional> | 0.0 | The angle from north (clockwise) in radians. The default is zero. | 
| options.granularity | Number | <optional> | 0.02 | The angular distance between points on the ellipse in radians. | 
| options.numberOfVerticalLines | Number | <optional> | 16 | Number of lines to draw between the top and bottom surface of an extruded ellipse. | 
Throws:
- 
DeveloperError : semiMajorAxis and semiMinorAxis must be greater than zero.
- 
DeveloperError : semiMajorAxis must be larger than the semiMajorAxis.
- 
DeveloperError : granularity must be greater than zero.
Example
var ellipsoid = Cesium.Ellipsoid.WGS84;
var ellipse = new Cesium.EllipseOutlineGeometry({
  ellipsoid : ellipsoid,
  center : ellipsoid.cartographicToCartesian(Cesium.Cartographic.fromDegrees(-75.59777, 40.03883)),
  semiMajorAxis : 500000.0,
  semiMinorAxis : 300000.0,
  rotation : Cesium.Math.toRadians(60.0)
});
var geometry = Cesium.EllipseOutlineGeometry.createGeometry(ellipse);
    
	
	
- EllipseOutlineGeometry#createGeometry
See:
Source:
Methods
- 
    <static> createGeometry
- 
    
    
    Computes the geometric representation of an outline of an ellipse on an ellipsoid, including its vertices, indices, and a bounding sphere. Parameters:Name Type Description ellipseGeometryEllipseOutlineGeometry A description of the ellipse. Returns:Geometry The computed vertices and indices.
