EllipsoidSurfaceAppearance

EllipsoidSurfaceAppearance

new

An appearance for geometry on the surface of the ellipsoid like PolygonGeometry and ExtentGeometry, which supports all materials like MaterialAppearance with MaterialAppearance.MaterialSupport.ALL. However, this appearance requires fewer vertex attributes since the fragment shader can procedurally compute normal, binormal, and tangent.

Parameters:
Name Type Argument Default Description
options.flat Boolean <optional>
false When true, flat shading is used in the fragment shader, which means lighting is not taking into account.
options.faceForward Boolean <optional>
false When true, the fragment shader flips the surface normal as needed to ensure that the normal faces the viewer to avoid dark spots. This is useful when both sides of a geometry should be shaded like WallGeometry.
options.translucent Boolean <optional>
true When true, the geometry is expected to appear translucent so EllipsoidSurfaceAppearance#renderState has alpha blending enabled.
options.aboveGround Boolean <optional>
false When true, the geometry is expected to be on the ellipsoid's surface - not at a constant height above it - so EllipsoidSurfaceAppearance#renderState has backface culling enabled.
options.material Material <optional>
Material.ColorType The material used to determine the fragment color.
options.vertexShaderSource String <optional>
undefined Optional GLSL vertex shader source to override the default vertex shader.
options.fragmentShaderSource String <optional>
undefined Optional GLSL fragment shader source to override the default fragment shader.
options.renderState RenderState <optional>
undefined Optional render state to override the default render state.
Example
var primitive = new Primitive({
  geometryInstances : new GeometryInstance({
    geometry : new PolygonGeometry({
      vertexFormat : EllipsoidSurfaceAppearance.VERTEX_FORMAT,
      // ...
    })
  }),
  appearance : new EllipsoidSurfaceAppearance({
    material : Material.fromType('Stripe')
  })
});
See:
Source:

Members

<readonly>

When true, the geometry is expected to be on the ellipsoid's surface - not at a constant height above it - so EllipsoidSurfaceAppearance#renderState has backface culling enabled.
Default Value:
  • false

<readonly>

When true, the geometry is expected to be closed so EllipsoidSurfaceAppearance#renderState has backface culling enabled. If the viewer enters the geometry, it will not be visible.
Default Value:
  • true

<readonly>

When true, the fragment shader flips the surface normal as needed to ensure that the normal faces the viewer to avoid dark spots. This is useful when both sides of a geometry should be shaded like WallGeometry.
Default Value:
  • false

<readonly>

When true, flat shading is used in the fragment shader, which means lighting is not taking into account.
Default Value:
  • false

<readonly> :String

The GLSL source code for the fragment shader. The full fragment shader source is built procedurally taking into account EllipsoidSurfaceAppearance#material, EllipsoidSurfaceAppearance#flat, and EllipsoidSurfaceAppearance#faceForward. Use EllipsoidSurfaceAppearance#getFragmentShaderSource to get the full source.

Procedurally creates the full GLSL fragment shader source. For EllipsoidSurfaceAppearance, this is derived from EllipsoidSurfaceAppearance#fragmentShaderSource, EllipsoidSurfaceAppearance#flat, and EllipsoidSurfaceAppearance#faceForward.

Creates a render state. This is not the final RenderState instance; instead, it can contain a subset of render state properties identical to renderState passed to Context#createRenderState.

Determines if the geometry is translucent based on EllipsoidSurfaceAppearance#translucent and Material#isTranslucent.

:Material

The material used to determine the fragment color. Unlike other EllipsoidSurfaceAppearance properties, this is not read-only, so an appearance's material can change on the fly.
Default Value:
  • Material.ColorType
See:

<readonly> :Object

The render state. This is not the final RenderState instance; instead, it can contain a subset of render state properties identical to renderState passed to Context#createRenderState.

The render state can be explicitly defined when constructing a EllipsoidSurfaceAppearance instance, or it is set implicitly via EllipsoidSurfaceAppearance#translucent and EllipsoidSurfaceAppearance#aboveGround.

<readonly>

When true, the geometry is expected to appear translucent so EllipsoidSurfaceAppearance#renderState has alpha blending enabled.
Default Value:
  • true

<readonly> :VertexFormat

The VertexFormat that this appearance instance is compatible with. A geometry can have more vertex attributes and still be compatible - at a potential performance cost - but it can't have less.

<readonly> :String

The GLSL source code for the vertex shader.

<static, constant> :VertexFormat

The VertexFormat that all EllipsoidSurfaceAppearance instances are compatible with, which requires only position and st attributes. Other attributes are procedurally computed in the fragment shader.