
Thanks for taking the time to check out my slides. This presentation covers

my experiences with working with open street map data for the first time, in

particular the trials and tribulations of trying to stream massive OSM data sets

in 3D on the web with Cesium.

1

Cesium is an open-source browser-based geospatial visualization engine for

3D globes and maps. It uses the Apache 2 license and because itôs built with

browser-based technology can run almost anywhere. Itôs grown into a large

open source community project, with over 80 contributors and a vibrant forum

with over 900 members.

Cesium provides 3D, 2D, and 2.5D (what we call Columbus View), all through

a single API. Itôs not just open source, it was also built for and with open

standards in mind. Itôs highly customizable with a flexible API. Finally, in

addition to 3D, one of the things that sets it apart is our handling of time-

dynamic data, almost everything in Cesium can be animated over time without

losing interactivity. Cesium was originally built with aerospace use cases in

mind, so it's incredibly precise and accurate in its visualization and can go from

ground level to outer space from within the same map.

2

When we started Cesium, we had no interest in trying to invent new data

formats. We just wanted to leverage existing open standards as much as

possible. However, what we found is that most data and formats out there are

2D-only. Visualizing data in 3D is very different than traditional 2D maps and

3D is a lot more than 2D + 1. On top of that, most 3D data that is available is

either not web-friendly or not designed for 3D visualization. Even geospatial

standards like GML are built more for data interoperability than direct

visualization.

3

For these reasons the Cesium team had a new goal and has gotten more and

more involved in the content-generation pipeline.

4

I'm proud to say we've published several open formats, starting with CZML and

then quantized-mesh for terrain. We got serious when we were part of the

team that helped create glTF (you can tell because it has a fancy logo). glTF

is an official 3D model standard published by Khronos. For those that may not

be familiar with them, Khronos is the governing body behind many graphics

standards, such as OpenGL, Collada, and WebGL, so it was incredibly

exciting for us to be a part of it and glTF is gaining tons of traction across

many domains.

But there was still some big-data sized holes in our needs, and while we could

represent single buildings, trees, and small point clouds; our goal was to

render truly massive datasets.

5

Our most recent initiative is 3D Tiles, a new open format whose goal is to

enable massive heterogeneous streaming 3D visualization and

styling. Common use cases for this is point clouds, large scale 3D vector data,

terrain, and of course cities.

3D Tiles are the missing link between massive heterogeneous 3D geospatial

datasets and 3D mapping engines. Bringing techniques from graphics

research, the movie industry, and the game industry to geospatial.

Once 3D Tiles was far enough along in development, it became time to really

look for good datasets to help flex its muscle. I'm a big fan of open data; but

before I started on this app, I never worked with open street map before. I

heard they provided height information for some of their buildings and I

thought that OSM could potentially be an awesome source of data to show off

3D Tiles and Cesium. Then I saw on Twitter that NYC had just imported all of

itôs data into OSM and I knew the time had come.

6

The end result was this demo: https://cesiumjs.org/NewYork

We took the New York City OpenStreetMap extract from Mapzen and turned it

into 3D Tiles.

Not only are we visualizing over 1.1 million buildings, but you can mouse over

each building to see what it is and click to get more information. Keeping this

level of interactivity in tact was very important to us. We didnôt just want to

turn the data into a pretty picture, we wanted to avoid losing any information.

Here are some highlights:

1. You can select various points of interest in NYC using the combo box in the

upper left

2. Clicking on a building gets you the OSM metadata, including links back to

the same feature on OSM

3. You can color buildings by their height (this stlying is computed on the fly

and doesnôt have to be ñbaked inò to the dataset.) You can also select

different color palletes.

7

4. You can also use the slider to hide buildings below a certain height.

5. The ñShow broken OSM relationsò checkbox will be explained in a future

slide.

6. Flyover mode is just a ñdemoò mode that disables mouse control and takes

you on a tour of the data set.

7

Now that youôve seen the demo, I want to talk about how I built it.

The first step was getting the data. I knew that OSM made data available for

download, but I figured trying to start with the 70 gig global dataset was

probably not the best idea. I then found an extracts page that made OSM pbf

files for individual cites and metro areas available. A few different sites

generate these extracts, but lately I've been using this page from Mapzen to

play with different data sets.

So at the same time I was learning about OSM data, I was also diving

headfirst into NodeJS development, so most of the pipeline is written in

JavaScript. Turns out there's an OSM pbf reader that will give you JSON

representations of nodes, ways, and relations from OSM, osm-pbf-parser.

OSM also has a pretty large set of wiki pages that discuss where there data is

supposed to look like and how data is supposed to be defined; and that was a

valuable resource in having some sense of what to look for in the data; but

ultimately I ended up with logging lots of output to the screen in order to figure

out how the objects worked.

8

Remember how I mentioned that most data was more for interop than

visualization, OSM is no different. They don't actually provide any data that is

any way ready to be visualized. Instead, I had to reconstruct a 3D model

representation from the object description. This obviously isnôt even the full

description, itôs just a table of cross-references that refer to other parts other

OSM data. Everything is laid out in an order thatôs excellent for archival and

interop purposes, but a long way away from visualization.

9

Once I could generate collada files, the next step was taking those files and

turn them into something streamable on the web. From the single 75

megabyte pbf file; I ended up generating 7.67 GB gigabytes of model data,

that's over 1.1 million (1,160,188) individual model files. Collada files in

general aren't very web-friendly, and not only that but making a new web

request for every building isn't scalable and will take forever to load, even if

you're only loading buildings in view (since as we saw from the demo, a single

view can still have thousands of buildings in it). Plus, just the locations and

metadata for the buildings was an 800mb JSON file on top of the models

themselves.

10

So the next step was to leverage both the glTF and 3D Tiles formats I

mentioned earlier to enable me to visualize the data in Cesium. I won't go into

the details of exactly how that works, but basically we tile up the models into a

3D geospatial data structure and then create 3D tiles, which has combined

geometry from multiple models. All of the data is stored in the glTF model

format, which is less verbose than collada and is much more performant to

load and render at runtime. Here's what a single tile looks like when visualized.

The complete dataset was reduced from 7.65 gigs down to just 301

megabytes, on top of that, the number of files went from over a million down to

3620 files.

A detailed break down of how 3D Tiles works is available at

http://cesiumjs.org/publications.html

11

Once I started visualizing that data, it was pretty easy to waste a bunch of time

just exploring the city. As I showed you early, you can mouse around and

identify different buildings, or click on them and get additional information from

OSM.

I started to notice some problems, as I showed you earlier, as you mouse of

each building it highlights. However, some buildings wouldn't be fully

highlighted and instead only a piece of it was. I beat my head against the wall

for a couple of hours until I realized that this is actually a problem in the OSM

data itself. It turns out that a lot of building parts don't actually refer back to

their parent relation like they are supposed to, and these broken relations are

littered throughout the NYC data set.

It's really easy to detect that a relation is broken, basically an OSM way is

marked as a building:part but no relations actually ever refer to that part.

The problem is that while it's easy to detect that these orphaned parts exist, it's

very difficult (at least from what I can tell) to determine which relation they

belong to. But by looking at the data visually, we can actually highlight these

broken relations and it becomes obvious which pieces belong to which

12

buildings. Now I didn't go as far as starting to write a 3D OSM editor, but

hopefully you can see from this demo that there are many benefits to such

possibilities.

Simply visualizing data in 3D provides new insights into that data even without

trying to take advantage of 3D specific geo-analysis.

Of course visualizing the data is only the beginning. A crucial piece of the 3D

Tiles format is being able to declaratively style things with meta-data, which

you already saw in these red broken relations. I can also do things like color

code the buildings based on their height, or zoning, or any other metadata you

might have, such as energy usage or average temperature. I also added a

little slider that shows and hides buildings above a certain height to make it

easier to navigate around large cities like NY. It was really important for us to

maintain this level of interactivity in 3D Tiles and it allows for a ton of use

cases for working with large data.

12

Of course styling the data is just once use cases. Seeing how those buildings

influence the world around them is another. For example; in city planning you

may want to do a shadow study to see how a new structure will affect sunlight.

Now this is still a working in progress so itôs behind the "shadows" query

parameter on the demo URL to enable shadow casting. We accurately model

the sun in Cesium and so when implementing shadows we also want them to

be as accurate as possible. Here I'm going to hit play and what you are

looking at now is 4:00pm, every day for a whole year. Every frame that gets

rendered is advancing at a 24 hour clip and you can see as the seasons in NY

change, shadows at 4pm get longer or shorter throughout the year. You can

pick whatever date and time you want and see what it will look like, but I

though this particular demo was kind of cool.

13

